

Observations of SO_2 , O_3 , and Aerosols with the Langley Mobile Ozone Lidar

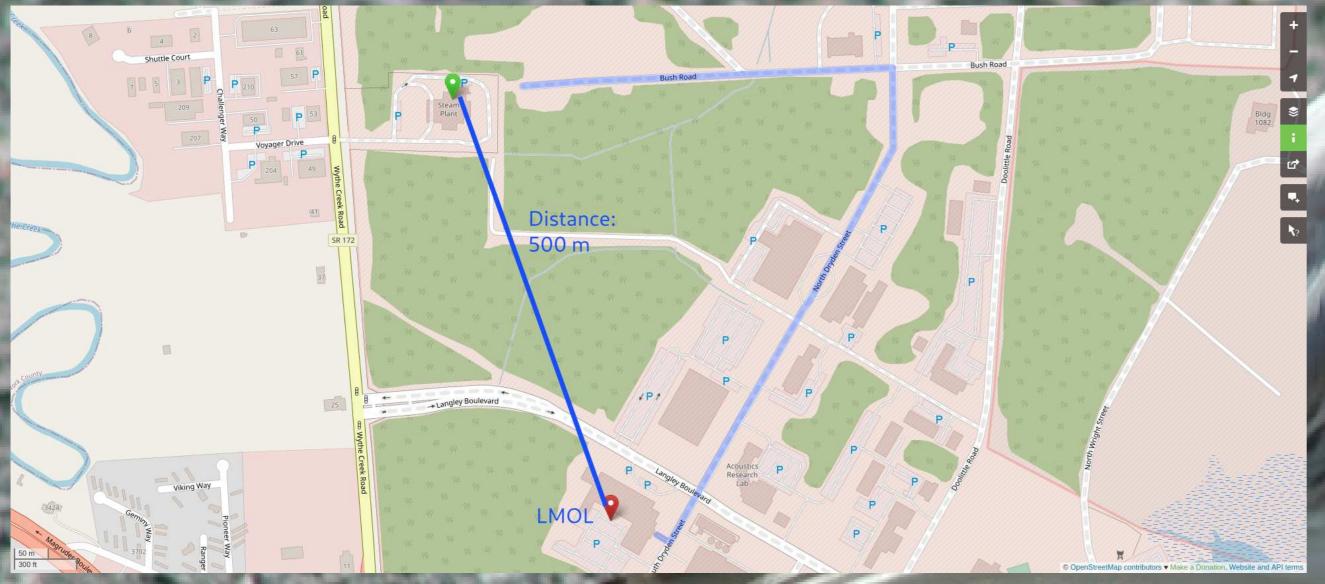
Guillaume Gronoff^{1,2}, Tim Berkoff¹, Daniel Phoenix^{1,2}, Claudia M. Bernier^{1,3}, Paul J. Walter⁴, James H. Flynn³, Alexander E. Kotsakis⁵

¹NASA LaRC, Hampton Va, USA ²SSAI, Hampton Va, USA ³University of Houston, Tx, USA ⁴St Edwards University, Austin, Tx, USA ⁵ NASA GSFC, Greenbelt, MD, USA

Abstract

Tropospheric Ozone LIDAR Network

IV - Observation of a SO₂ plume


LMOL, the NASA Langley Mobile Ozone Lidar, is located near NASA's LaRC steam plant when not deployed in campaigns. The steam plant is an incinerator, and when SO₂ was in the plume, it would affect the LMOL O₃ measurements at the plume altitudes of 100m-200m.

In 2022, we modified LMOL to observe four wavelengths simultaneously to distinguish between and measure both O3 and SO2. With an optimized selection of wavelengths, based on an analysis of the cross-sections, it is possible to retrieve both O₃ and SO₂ densities from three wavelengths. Adding a fourth wavelength enables better constrains the aerosol's backscatter and extinction. In this work, we present the dual observations of SO₂ and O₃ with the new channels of LMOL, and we present the advances in constraining the aerosol parameters from these multiple wavelengths. We highlight the SO₂ and Ozone Water-Land Environmental Transition Study (SOWLETS) campaign in preparation for the validation of the new system.

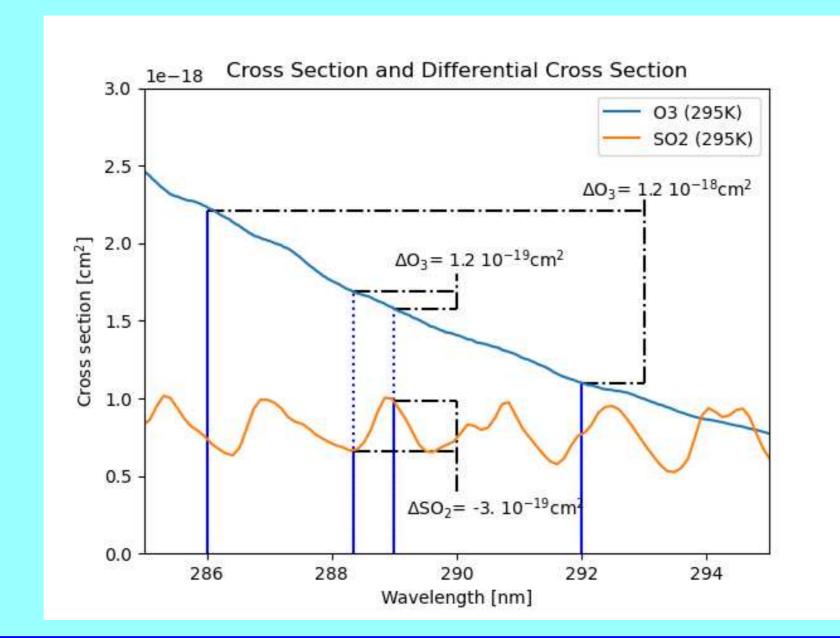
I - The SOWLETS Campaign

- SO₂ and Ozone Water-Land Environmental Transition Study (SOWLETS): campaign at NASA LaRC to study SO₂ and validate measurements
- Motivation: monitoring the tropospheric Air Quality (AQ)
- TEMPO, to be launched around 2020 will monitor AQ, needs support for validation and data product retrieval in complex regions.
- SO₂ from a nearby incinerator will be observed with LMOL, sondes, and Pandora
- Known outputs of the incinerator will enable a correct estimation of
- The plume has already been observed and characterized by LMOL

the plume SO₂ density

II - The LaRC/Langly Mobile O₃ Lidar

LMOL, the Langley Mobile Ozone Lidar [1] is a part of the Tropospheric Ozone Lidar Network (TOLNET). It has been deployed for the OWLETS campaign [4] and LISTOS campaign, for the 2014 DISCOVER-AQ [5] and SCOOP (Southern California Ozone Observation Project) campaign. It is able to observe from 100 m altitude to up to 10 km with varying vertical resolution [3]

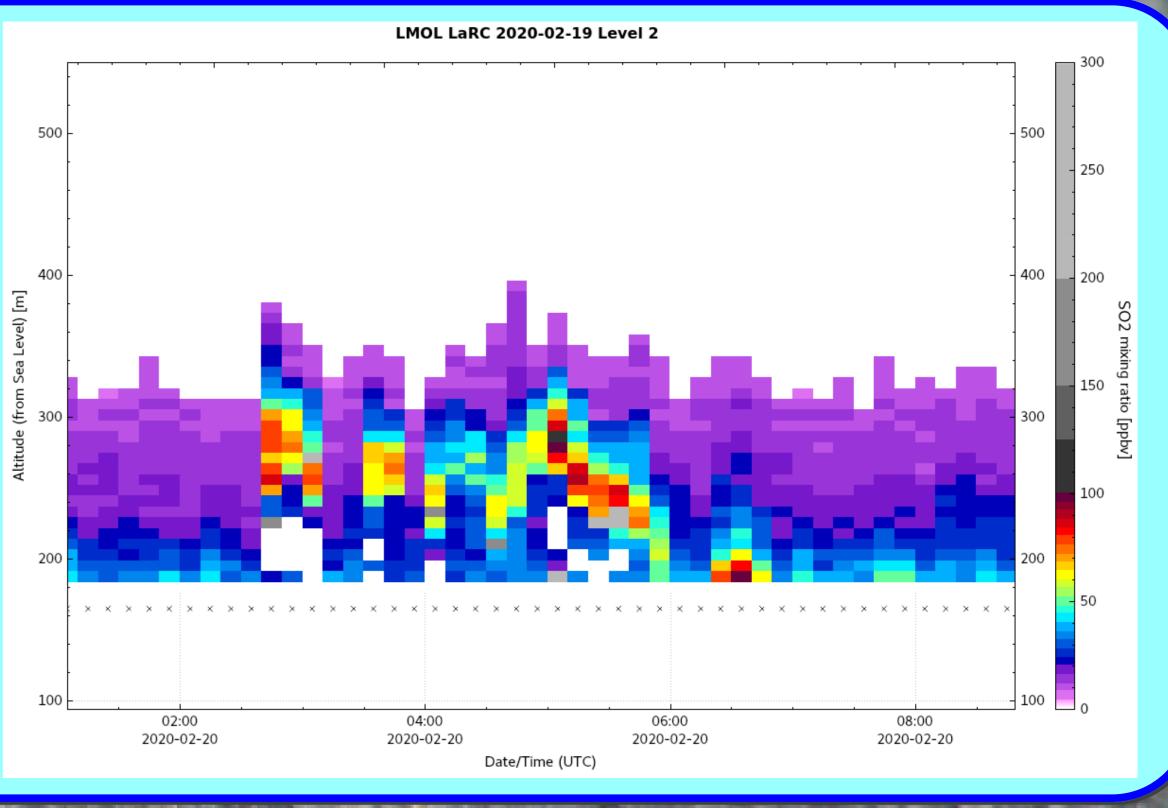

III - Aerosol and SO₂ modifications

Hardware modifications

- 4-channels licel cards
- Arbitrary signal generator and pulse generators for wavlength selections
- Improvements of the tunable laser cavity for power optimisation

Operational modifications

- 2-wavelengths operations have been demonstrated for both O₃ and SO₂
- 3-wavelengths is the minimum when both densities varies
- 4-wavelengths allow to reduce the uncertainties on aerosols
- Cross-sections have to be selected carefully


Validation of the retrieval system

- LibRadtran [2] was used to simulate LMOL signals for O_3 and SO_2 operations.
- The simulation first allowed to discover a loss of sensitivity of the PMT in 2019 on pure O₃ operations
- The processing of the simulations for O_3 reproduces $\frac{4}{9}$ 4000 real observations
- Simulated SO₂ can be retrieved up to 2km altitude on the dayside and 5 km in the nightside for 5 minutes integration
- The resolution of the retrieval for 5 minutes integration is also analyzed

Observation of a SO_2 plume on 2020-02-19

- Wind blowing from the north at 0.5 m/s; observations of 80-100 PPBV of SO₂ on a vertical range of 50m at around 250 - 300m alti-
- A plume of the power plant with a cross-section of 2500m^2 ($50 \text{m} \times 10^{-2}$ 50m) will have an average density of 90 PPBV for a yearly emission of 10 tons
- Plant emissions varies highly (43 tons in 2019, 93 in 2017). They also vary hourly.
- The system is able to measure realistic plume, but the additional observations provided by SOWLETS are needed

Conclusions

- The SOWLETS campaign is a multi-instrument observation of O₃ and
- The main target is the plume from the incinerator plant of NASA LaRC
- LMOL is able to observe SO₂ in addition to O₃
- Hardware and software development enable the future observation of both O₃ and SO₂ along with Aerosols

References

- [1] R. De Young, W. Carrion, R. Ganoe, D. Pliutau, G. Gronoff, T. Berkoff, and S. Kuang. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research. Applied Optics, 56:721, January 2017.
- [2] C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro. The libradtran software package for radiative transfer calculations (version 2.0.1). Geoscientific Model Development, 9(5):1647–1672, 2016.
- [3] G. Gronoff, T. Berkoff, K. E. Knowland, L. Lei, M. Shook, B. Fabbri, W. Carrion, and A. O. Langford. Case study of stratospheric intrusion above Hampton, Virginia: Lidar-observation and modeling analysis. Atmospheric Environment, 259:118498, August 2021.
- [4] Guillaume Gronoff, Joseph Robinson, Timothy Berkoff, Robert Swap, Betsy Farris, Jeremy Schroeder, Hannah S. Halliday, Travis Knepp, Elena Spinei, William Carrion, Edward E. Adcock, Zachary Johns, Danette Allen, and Margaret Pippin. A method for quantifying near range point source induced O₃ titration events using Co-located Lidar and Pandora measurements Atmospheric Environment, 204:43–52, May 2019.
- [5] L. Wang, M. J. Newchurch, R. J. Alvarez, II, T. A. Berkoff, S. S. Brown, W. Carrion, R. J. De Young, B. J. Johnson, R. Ganoe, G. Gronoff, G. Kirgis, S. Kuang, A. O. Langford, T. Leblanc, E. E. McDuffie, T. J. McGee, D. Pliutau, C. J. Senff, J. T. Sullivan, G. Sumnicht, L. W. Twigg, and A. J. Weinheimer. Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns. *Atmospheric Measurement Techniques*, 10:3865–3876, October 2017.

Contact information: Guillaume GRONOFF, Nasa Langley Research Center, Science Directorate, Chemistry and Dynamics Branch 21 Langley Blvd., Mail Stop 401B Hampton, Virginia 23681-2199 USA – Phone: +01 757 864 5693 - Email: Guillaume.P.Gronoff@nasa.gov Acknowledgments: The SOWLETS campaign was supported by NASA LaRC SIF program and the NASA Tropospheric Composition Program. The LMOL Lidar is supported by the TOLNET program. The campaign would have been impossible without the support of the NASA incineration plant.